This page depicts a collection of all layer-fMRI papers.
This list solely includes papers that fulfil the following inclusion criteria:
- focus on functional imaging
- cortical layers
- human imaging
- preprints are included
Suggestions and corrections are welcome layerfMRI@gmail.com
For non-cortical, non-fMRI, non-human, or non-layer high resolution MRI, please see reviews in special issues 1, 2, 3 (and references therein). The raw data used in this infographic are available here.
Click on image to enlarge.
This page depicts a collection of all layer-fMRI papers.
This list solely includes papers that fulfil the following inclusion criteria:
- focus on functional imaging
- cortical layers
- human imaging
- preprints are included
Suggestions and corrections are welcome layerfMRI@gmail.com
For non-cortical, non-fMRI, non-human, or non-layer high resolution MRI, please see reviews in special issues 1, 2, 3 (and references therein). The raw data used in this infographic are available here.
2022
- Scheeringa, R., Bonnefond, M., Van Mourik, T., Jensen, O., Norris, D. G., & Koopmans, P. J. (2020). Relating neural oscillations to laminar fMRI connectivity. BioRxiv, 2020.09.18.303263.
- Yun SD, Pais-roldán P, Palomero-gallagher N, Shah NJ. Mapping of Whole-Brain Resting-State Networks with Half-Millimetre. HBM. 2022.
- Deshpande, G., Zhao, Robinson, J. (2022). Functional Parcellation of the Hippocampus based on its Layer-specific Connectivity with Default Mode and Dorsal Attention Networks. NeuroImage, 119078.
- Cerliani L, Bhandari R, De Angelis L, et al. Predictive coding during action observation – a depth-resolved intersubject functional correlation study at 7T. Cortex. 2022.
- Deshpande G, Wang Y, Robinson J. Resting state fMRI connectivity is sensitive to laminar connectional architecture in the human brain. Brain Informatics. 2022;9(1).
- Iamshchinina P, Haenelt D, Trampel R, Weiskopf N, Kaiser D, Cichy RM. Benchmarking GE-BOLD, SE-BOLD, and SS-SI-VASO sequences for depth-dependent separation of feedforward and feedback signals in high-field MRI. bioRxiv. 2022:1-18.
- Yu Y, Huber L, Yang J, et al. Layer-specific activation in human primary somatosensory cortex during tactile temporal prediction error processing. Neuroimage. 2022;248:118867.
- Kurzawski JW, Gulban OF, Jamison K, Winawer J, Kay KN. The influence of non-neural factors on BOLD signal magnitude. bioRxiv. 2021;1822683:1-25.
2021
- Vizioli L, Yacoub E, Lewis LD, How pushing the spatiotemporal resolution of fMRI can advance neuroscience. Progress in Neurobiology, 2021.
- Schellekens W, Bhogal AA, Roefs ECA, Báez-Yáñez MG, Siero JCW, Petridou N. The many layers of BOLD. On the contribution of different vascular compartments to laminar fMRI. bioRxiv. 2021:6.
- Ng AKT, Jia K, Goncalves NR, et al. Ultra-High-Field Neuroimaging Reveals Fine-Scale Processing for 3D Perception. J Neurosci. 2021;41(40):8362-8374.
- Zwart JA De, Gelderen P Van, Duyn JH. Sensitivity limitations of high-resolution perfusion-based human fMRI at 7 Tesla. Magn Reson Imaging. 2021;84:135-144.
- Zoraghi M, Scherf N, Jaeger C, et al. Simulating Local Deformations in the Human Cortex Due to Blood Flow-Induced Changes in Mechanical Tissue Properties: Impact on Functional Magnetic Resonance Imaging. Front Neurosci. 2021;15(September):1-13.
- Iamshchinina P, Kaiser D, Yakupov R, et al. Perceived and mentally rotated contents are differentially represented in cortical depth of V1. Commun Biol. 2021:1-8.
- Pfaffenrot V, Voelker MN, Kashyap S, Koopmans PJ. Laminar fMRI using T2-prepared multi-echo FLASH. Neuroimage 2021;236(236):118163
- Cerliani L, Bhandari R, Angelis L De, et al. Depth-resolved intersubject functional correlation of 7T BOLD signals reveals increased stimulus related information sharing across deep layers in premotor and parietal nodes for predictable actions. bioRxiv. 2021:1-33.
- Vizioli L, Moeller S, Dowdle L, et al. Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nat Commun. 2021;12:5181.
- Ng AKT, Jia K, Goncalves NR, et al. Ultra-high field neuroimaging reveals fine-scale processing for 3D perception. J Neurosci. 2021;JN-RM-0065(July). doi:10.1523/JNEUROSCI.0065-21.2021
- Raimondo L, Knapen T, Oliveira ĺcaro A., et al. A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI. J Cereb Blood Flow Metab. 2021:0271678X2110372.
- van Dijk JA, Fracasso A, Petridou N, Dumoulin SO. Laminar processing of numerosity supports a canonical cortical microcircuit in human parietal cortex. Curr Biol. 2021:1-6.
- Chai Y, Liu TT, Marrett S, et al. Topographical and laminar distribution of audiovisual processing within human planum temporale. Prog Neurobiol. 2021;(July):102121.
- Chai Y, Li L, Wang Y, et al. Magnetization Transfer Weighted EPI Facilitates Cortical Depth Determination in Native fMRI Space. Neuroimage. 2021:118455.
- Han S, Eun S, Cho H, Uluda K, Kim S. Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T. Neuroimage. 2021;241(241):118435.
- Bandettini PA, Huber L, Finn ES. ScienceDirect Challenges and opportunities of mesoscopic brain mapping with fMRI. COBEHA. 2021;40:189-200.
- Jia K, Kourtzi Z. Protocol A protocol for ultra-high field laminar fMRI in the human brain brain. STAR Protoc. 2021;2(2):100415.
- Shao X, Guo F, Shou Q, et al. Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla. bioRxiv. 2021:1-20.
- Uğurbil K. Ultrahigh field and ultrahigh resolution fMRI. Curr Opin Biomed Eng. 2021;18.
- Iamshchinina P, Kaiser D, Yakupov R, et al. Perceived and mentally rotated contents are differentially represented in cortical layers of V1. bioRxiv. 2021;20(11):766.
- Akbari A, Bollmann S, Ali TS, Barth M. Modelling the depth-dependent VASO and BOLD responses in human primary visual cortex. bioRxiv. 2021:1-31.
- Wang F, Dong Z, Wald LL, Polimeni JR, Setsompop K. Simultaneous pure T2 and varying T2′-weighted BOLD fMRI using Echo Planar Time-resolved Imaging (EPTI) for mapping laminar fMRI responses. Neuroimage. 2021:1-24.
- Yun SD, Pais-roldán P, Palomero-gallagher N, Shah NJ. Mapping of Whole-Brain Resting-State Networks with Half-Millimetre. HBM. 2022.
- Fracasso A, Dumoulin SO, Petridou N. Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex. Prog Neurobiol. 2021:104947.
- Scheeringa R, Bonnefond M, van Mourik T, Jensen O, Norris DG, Koopmans PJ. Relating neural oscillations to laminar fMRI connectivity. bioRxiv. 2020.
- Scheffler K, Engelmann J, Heule R. BOLD sensitivity and vessel size specificity along CPMG and GRASE echo trains. Magn Reson Imaging. 2021:1-8.
- Uludag K, Havlicek M. Determining laminar neuronal activity from BOLD fMRI using a generative model. Prog Neurobiol. 2021;(April):102055.
- Mourik T Van, Koopmans PJ, Bains LJ, Norris DG, Fm J. Investigation of layer specific BOLD during visual attention in the human visual cortex. bioRxiv. 2021:1-17.
- Zaretskaya N. Zooming-in on higher-level vision: High-resolution fMRI for understanding visual perception and awareness. Prog Neurobiol. 2021;(November 2020):101998.
- Taso M, Munsch F, Zhao L, Alsop DC. Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL). J Cereb Blood Flow Metab. 2021.
- Stanley OW, Kuurstra AB, Klassen LM, Menon RS, Gati JS. Effects of phase regression on high-resolution functional MRI of the primary visual cortex. Neuroimage. 2021;227(December 2020):117631.
- Park S, Torrisi S, Townsend JD, Beckett A, Feinberg DA. Highly accelerated submillimeter resolution 3D GRASE with controlled T2 blurring in T2-weighted functional MRI at 7 Tesla: A feasibility study. Magn Reson Med. 2021;85(5):2490-2506.
- van Dijk JA, Fracasso A, Petridou N, Dumoulin SO. Validating Linear Systems Analysis for Laminar fMRI: Temporal Additivity for Stimulus Duration Manipulations. Brain Topogr. 2021;34(1):88-101.
- Markuerkiaga I, Marques JP, Gallagher TE, Norris DG. Estimation of Laminar BOLD Activation Profiles using Deconvolution with a Physiological Point Spread Function. Journal of Neuroscience Methods. 2021:1-28.
- Schreiber S, Northall A, Weber M, et al. Topographical layer imaging as a tool to track neurodegenerative disease spread in M1. Nat Rev Neurosci. 2021;22(1):69.
- Huang P, Correia MM, Rua C, Rodgers CT, Henson N, Carlin JD. Correcting for Superficial Bias in 7T Gradient Echo fMRI. Frontiers in Neuroscience. 2021.
2020
- Pais-Roldán P, Yun SD, Palomero-Gallagher N, Shah NJ. Cortical depth-dependent human fMRI of resting-state networks using EPIK. bioRxiv. 2020:1-26.
- Weldon KB, Olman CA. Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging. Philos Trans B. 2020.
- Zamboni E, Kemper VG, Goncalves NR, et al. Fine-scale computations for adaptive processing in the human brain. Elife. 2020;9:1-21.
- Navarro KT, Sanchez MJ, Engel SA, Olman CA, Weldon KB. Depth-dependent functional MRI responses to chromatic and achromatic stimuli throughout V1 and V2. Neuroimage. 2020:117520.
- Bollmann S, Barth M. New acquisition techniques and their prospects for the achievable resolution of fMRI. Prog Neurobiol. 2020:ahead of print.
- Báez-Yánez MG, Siero JC, Petridou N. A statistical 3D model of the human cortical vasculature to compute the hemodynamic fingerprint of the BOLD fMRI signal. bioRxiv. 2020;31(0):1-63.
- Finn ES, Huber L, Bandettini PA. Higher and deeper: Bringing layer fMRI to association cortex. Prog Neurobiol. 2020;101930.
- Kay K, Jamison KW, Zhang RY, Uğurbil K. A temporal decomposition method for identifying venous effects in task-based fMRI. Nat Methods. 2020;17(10):1033-1039.
- Kashyap S, Ivanov D, Havlicek M, Huber L, Poser BA, Uludağ K. Sub-millimetre resolution laminar fMRI using arterial spin labelling in humans at 7T. bioRxiv. 2020:1-45.
- Kuehn E, Pleger B. Encoding schemes in somatosensation: From micro- to meta-topography. Neuroimage. 2020;223(November 2019).
- Haarsma J, Kok P, Browning M. The promise of layer-specific neuroimaging for testing predictive coding theories of psychosis. Schizophrenia Research. 2020.
- Morgan AT, Nothnagel N, Petro LS, Goense J, Muckli L. High-resolution line-scanning reveals distinct visual response properties across human cortical layers. bioRxiv. 2020:1-17.
- Zaretskaya N, Bause J, Polimeni JR, Grassi PR, Scheffler K, Bartels A. Eye-selective fMRI activity in human primary visual cortex: Comparison between 3T and 9.4T, and effects across cortical depth. Neuroimage. 2020;220.
- McColgan P, Helbling S, Vaculčiaková L, et al. Relating quantitative 7T MRI across cortical depths to cytoarchitectonics, gene expression and connectomics: A framework for tracking neurodegenerative disease. bioRxiv. 2020.
- Mccolgan P, Joubert J, Tabrizi SJ. The human motor cortex microcircuit: insights for neurodegenerative disease. Nat Rev Neurosci. 2020;3(4):1-15.
- Marquardt I, Weerd P De, Schneider M, Gulban OF, Ivanov D, Uludag K. Depth-resolved ultra-high field fMRI reveals feedback contributions to surface motion perception. 2019:1-40.
- Jia K, Zamboni E, Kemper V, et al. Recurrent Processing Drives Perceptual Plasticity. Curr Biol. 2020;30:1-11. doi:10.1016/j.cub.2020.08.016
- Hollander, Gilles et al., 2020. “Ultra-high resolution fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns.” NeuroImage 2020, .
- Vizioli, Luca et al. 2020. “Multivoxel Pattern of Blood Oxygen Level Dependent Activity Can Be Sensitive to Stimulus Specific Fine Scale Responses.” Scientific Reports
- Guo F, Liu C, Qian C, et al. Layer-dependent multiplicative effects of spatial attention on contrast responses in human early visual cortex. bioRxiv. 2020.
- Zamboni E, Kemper VG, Goncalves N, et al. Suppressive recurrent and feedback computations for adaptive processing in the human brain. bioRxiv. 2020.
- Aitken F, Menelaou G, Warrington O, et al. Prior expectations evoke stimulus templates in the deep layers of V1. Plos Biology. 2020;44(0):2020.02.13.947622.
- Margalit E, Jamison KW, Weiner KS, et al. Ultra-high-resolution fMRI of human ventral temporal cortex reveals differential representation of categories and domains. J Neurosci. 2020.
- Hendriks AD, D’Agata F, Raimondo L, et al. Pushing functional MRI spatial and temporal resolution further: High-density receive arrays combined with shot-selective 2D CAIPIRINHA for 3D echo-planar imaging at 7 T. NMR Biomed. 2020.
- Persichetti AS, Avery JA, Huber L, Merriam EP, Martin A. Layer-Specific Contributions to Imagined and Executed Hand Movements in Human Primary Motor Cortex. SSRN Electron J. 2020:1-5.
- Dijk JA Van, Fracasso A, Petridou N, Dumoulin SO. Linear systems analysis for laminar fMRI : Evaluating BOLD amplitude scaling for luminance contrast manipulations. Sci Rep. 2020;10:5462.
- Huber L, Finn ES, Chai Y, et al. Layer-dependent functional connectivity methods. Prog Neurobiol. 2020
- Guo, Fanhua et al. 2020. “Layer-Dependent Multiplicative Effects of Spatial Attention on Contrast Responses in Human Early Visual Cortex.” bioRxiv: preprint.
- Guidi, M et al. 2020. “Cortical Laminar Resting-State Fluctuations Scale with the Hypercapnic Bold Response.” HBM: ahead of print.
- Huber, Laurentius et al. 2020. “Sub-Millimeter FMRI Reveals Multiple Topographical Digit Representations That Form Action Maps in Human Motor Cortex.” NeuroImage 208: 116463.
- Gau, Remi et al. 2019. “Resolving Multisensory and Attentional Influences across Cortical Depth in Sensory Cortices.” eLife: 548933.
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2007
2002
1999
- Deshpande, G., Zhao, Robinson, J. (2022). Functional Parcellation of the Hippocampus based on its Layer-specific Connectivity with Default Mode and Dorsal Attention Networks. NeuroImage, 119078.
- Cerliani L, Bhandari R, De Angelis L, et al. Predictive coding during action observation – a depth-resolved intersubject functional correlation study at 7T. Cortex. 2022.
- Deshpande G, Wang Y, Robinson J. Resting state fMRI connectivity is sensitive to laminar connectional architecture in the human brain. Brain Informatics. 2022;9(1).
- Iamshchinina P, Haenelt D, Trampel R, Weiskopf N, Kaiser D, Cichy RM. Benchmarking GE-BOLD, SE-BOLD, and SS-SI-VASO sequences for depth-dependent separation of feedforward and feedback signals in high-field MRI. bioRxiv. 2022:1-18.
- Yu Y, Huber L, Yang J, et al. Layer-specific activation in human primary somatosensory cortex during tactile temporal prediction error processing. Neuroimage. 2022;248:118867.
- Kurzawski JW, Gulban OF, Jamison K, Winawer J, Kay KN. The influence of non-neural factors on BOLD signal magnitude. bioRxiv. 2021;1822683:1-25.
2021
- Vizioli L, Yacoub E, Lewis LD, How pushing the spatiotemporal resolution of fMRI can advance neuroscience. Progress in Neurobiology, 2021.
- Schellekens W, Bhogal AA, Roefs ECA, Báez-Yáñez MG, Siero JCW, Petridou N. The many layers of BOLD. On the contribution of different vascular compartments to laminar fMRI. bioRxiv. 2021:6.
- Ng AKT, Jia K, Goncalves NR, et al. Ultra-High-Field Neuroimaging Reveals Fine-Scale Processing for 3D Perception. J Neurosci. 2021;41(40):8362-8374.
- Zwart JA De, Gelderen P Van, Duyn JH. Sensitivity limitations of high-resolution perfusion-based human fMRI at 7 Tesla. Magn Reson Imaging. 2021;84:135-144.
- Zoraghi M, Scherf N, Jaeger C, et al. Simulating Local Deformations in the Human Cortex Due to Blood Flow-Induced Changes in Mechanical Tissue Properties: Impact on Functional Magnetic Resonance Imaging. Front Neurosci. 2021;15(September):1-13.
- Iamshchinina P, Kaiser D, Yakupov R, et al. Perceived and mentally rotated contents are differentially represented in cortical depth of V1. Commun Biol. 2021:1-8.
- Pfaffenrot V, Voelker MN, Kashyap S, Koopmans PJ. Laminar fMRI using T2-prepared multi-echo FLASH. Neuroimage 2021;236(236):118163
- Cerliani L, Bhandari R, Angelis L De, et al. Depth-resolved intersubject functional correlation of 7T BOLD signals reveals increased stimulus related information sharing across deep layers in premotor and parietal nodes for predictable actions. bioRxiv. 2021:1-33.
- Vizioli L, Moeller S, Dowdle L, et al. Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nat Commun. 2021;12:5181.
- Ng AKT, Jia K, Goncalves NR, et al. Ultra-high field neuroimaging reveals fine-scale processing for 3D perception. J Neurosci. 2021;JN-RM-0065(July). doi:10.1523/JNEUROSCI.0065-21.2021
- Raimondo L, Knapen T, Oliveira ĺcaro A., et al. A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI. J Cereb Blood Flow Metab. 2021:0271678X2110372.
- van Dijk JA, Fracasso A, Petridou N, Dumoulin SO. Laminar processing of numerosity supports a canonical cortical microcircuit in human parietal cortex. Curr Biol. 2021:1-6.
- Chai Y, Liu TT, Marrett S, et al. Topographical and laminar distribution of audiovisual processing within human planum temporale. Prog Neurobiol. 2021;(July):102121.
- Chai Y, Li L, Wang Y, et al. Magnetization Transfer Weighted EPI Facilitates Cortical Depth Determination in Native fMRI Space. Neuroimage. 2021:118455.
- Han S, Eun S, Cho H, Uluda K, Kim S. Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T. Neuroimage. 2021;241(241):118435.
- Bandettini PA, Huber L, Finn ES. ScienceDirect Challenges and opportunities of mesoscopic brain mapping with fMRI. COBEHA. 2021;40:189-200.
- Jia K, Kourtzi Z. Protocol A protocol for ultra-high field laminar fMRI in the human brain brain. STAR Protoc. 2021;2(2):100415.
- Shao X, Guo F, Shou Q, et al. Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla. bioRxiv. 2021:1-20.
- Uğurbil K. Ultrahigh field and ultrahigh resolution fMRI. Curr Opin Biomed Eng. 2021;18.
- Iamshchinina P, Kaiser D, Yakupov R, et al. Perceived and mentally rotated contents are differentially represented in cortical layers of V1. bioRxiv. 2021;20(11):766.
- Akbari A, Bollmann S, Ali TS, Barth M. Modelling the depth-dependent VASO and BOLD responses in human primary visual cortex. bioRxiv. 2021:1-31.
- Wang F, Dong Z, Wald LL, Polimeni JR, Setsompop K. Simultaneous pure T2 and varying T2′-weighted BOLD fMRI using Echo Planar Time-resolved Imaging (EPTI) for mapping laminar fMRI responses. Neuroimage. 2021:1-24.
- Fracasso A, Dumoulin SO, Petridou N. Point-spread function of the BOLD response across columns and cortical depth in human extra-striate cortex. Prog Neurobiol. 2021:104947.
- Scheeringa R, Bonnefond M, van Mourik T, Jensen O, Norris DG, Koopmans PJ. Relating neural oscillations to laminar fMRI connectivity. bioRxiv. 2020.
- Scheffler K, Engelmann J, Heule R. BOLD sensitivity and vessel size specificity along CPMG and GRASE echo trains. Magn Reson Imaging. 2021:1-8.
- Uludag K, Havlicek M. Determining laminar neuronal activity from BOLD fMRI using a generative model. Prog Neurobiol. 2021;(April):102055.
- Mourik T Van, Koopmans PJ, Bains LJ, Norris DG, Fm J. Investigation of layer specific BOLD during visual attention in the human visual cortex. bioRxiv. 2021:1-17.
- Zaretskaya N. Zooming-in on higher-level vision: High-resolution fMRI for understanding visual perception and awareness. Prog Neurobiol. 2021;(November 2020):101998.
- Taso M, Munsch F, Zhao L, Alsop DC. Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL). J Cereb Blood Flow Metab. 2021.
- Stanley OW, Kuurstra AB, Klassen LM, Menon RS, Gati JS. Effects of phase regression on high-resolution functional MRI of the primary visual cortex. Neuroimage. 2021;227(December 2020):117631.
- Park S, Torrisi S, Townsend JD, Beckett A, Feinberg DA. Highly accelerated submillimeter resolution 3D GRASE with controlled T2 blurring in T2-weighted functional MRI at 7 Tesla: A feasibility study. Magn Reson Med. 2021;85(5):2490-2506.
- van Dijk JA, Fracasso A, Petridou N, Dumoulin SO. Validating Linear Systems Analysis for Laminar fMRI: Temporal Additivity for Stimulus Duration Manipulations. Brain Topogr. 2021;34(1):88-101.
- Markuerkiaga I, Marques JP, Gallagher TE, Norris DG. Estimation of Laminar BOLD Activation Profiles using Deconvolution with a Physiological Point Spread Function. Journal of Neuroscience Methods. 2021:1-28.
- Schreiber S, Northall A, Weber M, et al. Topographical layer imaging as a tool to track neurodegenerative disease spread in M1. Nat Rev Neurosci. 2021;22(1):69.
- Huang P, Correia MM, Rua C, Rodgers CT, Henson N, Carlin JD. Correcting for Superficial Bias in 7T Gradient Echo fMRI. Frontiers in Neuroscience. 2021.
2020
- Pais-Roldán P, Yun SD, Palomero-Gallagher N, Shah NJ. Cortical depth-dependent human fMRI of resting-state networks using EPIK. bioRxiv. 2020:1-26.
- Weldon KB, Olman CA. Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging. Philos Trans B. 2020.
- Zamboni E, Kemper VG, Goncalves NR, et al. Fine-scale computations for adaptive processing in the human brain. Elife. 2020;9:1-21.
- Navarro KT, Sanchez MJ, Engel SA, Olman CA, Weldon KB. Depth-dependent functional MRI responses to chromatic and achromatic stimuli throughout V1 and V2. Neuroimage. 2020:117520.
- Bollmann S, Barth M. New acquisition techniques and their prospects for the achievable resolution of fMRI. Prog Neurobiol. 2020:ahead of print.
- Báez-Yánez MG, Siero JC, Petridou N. A statistical 3D model of the human cortical vasculature to compute the hemodynamic fingerprint of the BOLD fMRI signal. bioRxiv. 2020;31(0):1-63.
- Finn ES, Huber L, Bandettini PA. Higher and deeper: Bringing layer fMRI to association cortex. Prog Neurobiol. 2020;101930.
- Kay K, Jamison KW, Zhang RY, Uğurbil K. A temporal decomposition method for identifying venous effects in task-based fMRI. Nat Methods. 2020;17(10):1033-1039.
- Kashyap S, Ivanov D, Havlicek M, Huber L, Poser BA, Uludağ K. Sub-millimetre resolution laminar fMRI using arterial spin labelling in humans at 7T. bioRxiv. 2020:1-45.
- Kuehn E, Pleger B. Encoding schemes in somatosensation: From micro- to meta-topography. Neuroimage. 2020;223(November 2019).
- Haarsma J, Kok P, Browning M. The promise of layer-specific neuroimaging for testing predictive coding theories of psychosis. Schizophrenia Research. 2020.
- Morgan AT, Nothnagel N, Petro LS, Goense J, Muckli L. High-resolution line-scanning reveals distinct visual response properties across human cortical layers. bioRxiv. 2020:1-17.
- Zaretskaya N, Bause J, Polimeni JR, Grassi PR, Scheffler K, Bartels A. Eye-selective fMRI activity in human primary visual cortex: Comparison between 3T and 9.4T, and effects across cortical depth. Neuroimage. 2020;220.
- McColgan P, Helbling S, Vaculčiaková L, et al. Relating quantitative 7T MRI across cortical depths to cytoarchitectonics, gene expression and connectomics: A framework for tracking neurodegenerative disease. bioRxiv. 2020.
- Mccolgan P, Joubert J, Tabrizi SJ. The human motor cortex microcircuit: insights for neurodegenerative disease. Nat Rev Neurosci. 2020;3(4):1-15.
- Marquardt I, Weerd P De, Schneider M, Gulban OF, Ivanov D, Uludag K. Depth-resolved ultra-high field fMRI reveals feedback contributions to surface motion perception. 2019:1-40.
- Jia K, Zamboni E, Kemper V, et al. Recurrent Processing Drives Perceptual Plasticity. Curr Biol. 2020;30:1-11. doi:10.1016/j.cub.2020.08.016
- Hollander, Gilles et al., 2020. “Ultra-high resolution fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns.” NeuroImage 2020, .
- Vizioli, Luca et al. 2020. “Multivoxel Pattern of Blood Oxygen Level Dependent Activity Can Be Sensitive to Stimulus Specific Fine Scale Responses.” Scientific Reports
- Guo F, Liu C, Qian C, et al. Layer-dependent multiplicative effects of spatial attention on contrast responses in human early visual cortex. bioRxiv. 2020.
- Zamboni E, Kemper VG, Goncalves N, et al. Suppressive recurrent and feedback computations for adaptive processing in the human brain. bioRxiv. 2020.
- Aitken F, Menelaou G, Warrington O, et al. Prior expectations evoke stimulus templates in the deep layers of V1. Plos Biology. 2020;44(0):2020.02.13.947622.
- Margalit E, Jamison KW, Weiner KS, et al. Ultra-high-resolution fMRI of human ventral temporal cortex reveals differential representation of categories and domains. J Neurosci. 2020.
- Hendriks AD, D’Agata F, Raimondo L, et al. Pushing functional MRI spatial and temporal resolution further: High-density receive arrays combined with shot-selective 2D CAIPIRINHA for 3D echo-planar imaging at 7 T. NMR Biomed. 2020.
- Persichetti AS, Avery JA, Huber L, Merriam EP, Martin A. Layer-Specific Contributions to Imagined and Executed Hand Movements in Human Primary Motor Cortex. SSRN Electron J. 2020:1-5.
- Dijk JA Van, Fracasso A, Petridou N, Dumoulin SO. Linear systems analysis for laminar fMRI : Evaluating BOLD amplitude scaling for luminance contrast manipulations. Sci Rep. 2020;10:5462.
- Huber L, Finn ES, Chai Y, et al. Layer-dependent functional connectivity methods. Prog Neurobiol. 2020
- Guo, Fanhua et al. 2020. “Layer-Dependent Multiplicative Effects of Spatial Attention on Contrast Responses in Human Early Visual Cortex.” bioRxiv: preprint.
- Guidi, M et al. 2020. “Cortical Laminar Resting-State Fluctuations Scale with the Hypercapnic Bold Response.” HBM: ahead of print.
- Huber, Laurentius et al. 2020. “Sub-Millimeter FMRI Reveals Multiple Topographical Digit Representations That Form Action Maps in Human Motor Cortex.” NeuroImage 208: 116463.
- Gau, Remi et al. 2019. “Resolving Multisensory and Attentional Influences across Cortical Depth in Sensory Cortices.” eLife: 548933.