Partial-Fourier imaging at High Resolutions

This blog post discusses the resolution loss when applying partial-Fourier imaging in GE-EPI.

I found that that when I was aiming for high-resolutions, it is beneficial to refrain from the application of partial Fourier (PF) imaging as much as possible. For the long readout durations at high-resolutions and the fast T2/T2*-decay at high field strengths results in even stronger blurring of partial-Fourier.

Continue reading “Partial-Fourier imaging at High Resolutions”

Smoothing within layers

Smoothing within layers can be advantageous for multiple reasons:

  • Increasing the CNR without loosing spatial information across cortical depths.
  • Visualization of striping pattern across columnar structures.
  • Avoiding leakage of physiological noise from CSF space into GM tissue.

image88.gif Continue reading “Smoothing within layers”

Finding ROI of the double layers in M1

In this post I want to describe the guidelines that helped me to find the right spot of primary motor cortex (M1) that has a double-layer pattern during a conventional finger tapping task.

The motor cortex is an excellent model system to debug-layer fMRI methodology for multiple reasons:

  1. It has a consistent folding pattern across people.
  2. Its folding pattern is convoluted across one axis only. Hence, it is possible to use thicker slices with higher in-plane resolution.
  3. With 4mm, its is the thickest part of the cortex compared to all other areas. Hence, layer analysis can be done even with 1.2 mm voxels.
  4. It has an expected double layer structure, with two separate peaks. The separability of the peaks can be used as a measure of functional specificity.
  5. It is very close to the RF-receive coils and has high tSNR.
  6. It is easy to shim.

One tricky part, however, is to find the right location of the double layer feature.

Continue reading “Finding ROI of the double layers in M1”

Quick analysis pipeline of getting layer fMRI profiles without anatomical reference data

This is a step-by-step description on how to obtain layer profiles from any high-resolution fMRI dataset. It is based on manual delineated ROIs and does not require the tricky analysis steps including distortion correction, registration to whole brain “anatomical” datasets, or automatic tissue type segmentation. Hence this is a very quick way for a first glance of the freshly acquired data.

This post shows how you can get from activation maps to layer-profiles in 10 min. In a quick and dirty way.

The important steps are: 1.) Upscaling, 2.) Manual delineation of GM, 3.) Calculation of cortical depths in ROI, 4.) Extracting functional data based on calculated cortical depths.

Continue reading “Quick analysis pipeline of getting layer fMRI profiles without anatomical reference data”

Gradient Temperature

tSNR changes across time

I got interested in gradient temperature because of the weird effect that tSNR seemed to increase over time.

Upon posing this effect on Twitter, PracitalfMRI and Ben Poser suggested that it might be due to gradient temperature. So I learned how to track it with as described below.

Continue reading “Gradient Temperature”

GRAPPA kernel size

Almost every modern fMRI protocol (at SIEMENS scanners) uses GRAPPA. However, only very few people pay a lot of attention on optimal usage of the GRAPPA auto-callibration data. I realized the importance of optimizing GRAPPA parameters when doing high-resolution EPI. At high resolutions, GRAPPA-related noise can become an increasingly important limitation.  This is especially true with the low bandwidth that the body gradient coils force us to use.

In this blog-post I will explain how the GRAPPA kernel-size affects the fMRI data quality, how you can change it, how you can find out which kernel-size was used, and I will descrive simple software tools to identify regions that might benefit from adaptations of the GRAPPA-kernel size.

Continue reading “GRAPPA kernel size”

layer-fMRI software pipelines

There is a long list of software packages that are capable of performing high-resolution MRI analysis.

Some of them are used by multiple groups and some of them are customized for specific studies only.

In this post, I want to give an overview over the most important software packages, their advantages and disadvantages, and their popularity in the field.

Continue reading “layer-fMRI software pipelines”