Documentation of Installing an IDEA VirtualBox for VE11 from OVA

This post documents the installation of an IDEA VE11 virtual box on a mac as done on May 14th 2018

Big thanks to Andy for figuring out how this works


  • Here I start with a already built images of IDEA on windows vista and mars on Ubuntu. the images from FMRIF can be taken from IDEA_ve11c-mars.ova and IDEA_ve11c+vd13d+vd13a.ova
  • Virtual box software can be downloaded here.

Continue reading “Documentation of Installing an IDEA VirtualBox for VE11 from OVA”

EPI phase correction algorithms

At high resolution EPI, the gradients are pushed to their limits and the ramp sampling ratio is particularly large. This means that the ghosting is increased and the Nyquist ghost correction is getting more important. In this post, I describe how to change the Nyquist ghost correction algorithm.

The high ramp sampling ratio in high-resolution EPI results in larger ghosts. Changing the correction algorithm from “normal” to “local” can help a lot.

Continue reading “EPI phase correction algorithms”

SS-SI VASO pitfalls in visual cortex

Activation maps for BOLD and VASO. At about 0.8 mm resolution, one starts to see that VASO is less sensitive to large draining veins.

With respect to high-resolution VASO application, visual cortex is very unique. Because of its high demand, the most important pitfalls of SS-SI VASO in visual cortex are discussed below.

Continue reading “SS-SI VASO pitfalls in visual cortex”

Unwanted spatial blurring during resampling

In layer-fMRI, we spend so much time and effort to achieve high spatial resolutions and small voxel sizes during the acquisition. However, during the evaluation pipeline much of this spatial resolution can be lost during multiple resampling steps.

In this post, I want to discuss sources of signal blurring during spatial resampling steps and potential strategies to account for them.

Continue reading “Unwanted spatial blurring during resampling”

Partial-Fourier imaging at High Resolutions

This blog post discusses the resolution loss when applying partial-Fourier imaging in GE-EPI in the presence of strong T2*-decay.

I found that that when I was aiming for high-resolutions, it is beneficial to refrain from the application of partial Fourier (PF) imaging as much as possible. For the long readout durations at high-resolutions and the fast T2/T2*-decay at high field strengths results in even stronger blurring of partial-Fourier.

Continue reading “Partial-Fourier imaging at High Resolutions”